Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3412, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649356

ABSTRACT

Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.


Subject(s)
Gastrointestinal Microbiome , Histone Demethylases , Intestinal Mucosa , Intestine, Small , Animals , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice , Histone Demethylases/metabolism , Histone Demethylases/genetics , Gastrointestinal Microbiome/immunology , Intestine, Small/immunology , Intestine, Small/microbiology , Mice, Inbred C57BL , Immunity, Innate , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Knockout , Female , Male , Homeostasis
2.
Front Immunol ; 14: 1243528, 2023.
Article in English | MEDLINE | ID: mdl-37869014

ABSTRACT

Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-ß, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.


Subject(s)
Matrix Metalloproteinase 17 , Trichuriasis , Animals , Mice , Colon , Goblet Cells/metabolism , Matrix Metalloproteinase 17/metabolism , Persistent Infection , Trichuris
3.
Adv Sci (Weinh) ; 10(25): e2300401, 2023 09.
Article in English | MEDLINE | ID: mdl-37424036

ABSTRACT

Dermatitis herpetiformis (DH) is an inflammatory skin disorder often considered as an extra intestinal manifestation of celiac disease (CeD). Hallmarks of CeD and DH are auto-antibodies to transglutaminase 2 (TG2) and transglutaminase 3 (TG3), respectively. DH patients have auto-antibodies reactive with both transglutaminase enzymes. Here it is reported that in DH both gut plasma cells and serum auto-antibodies are specific for either TG2 or TG3 with no TG2-TG3 cross reactivity. By generating monoclonal antibodies from TG3-specific duodenal plasma cells of DH patients, three conformational epitope groups are defined. Both TG2-specific and TG3-specific gut plasma cells have few immunoglobulin (Ig) mutations, and the two transglutaminase-reactive populations show distinct selection of certain heavy and light chain V-genes. Mass spectrometry analysis of TG3-specific serum IgA corroborates preferential usage of IGHV2-5 in combination with IGKV4-1. Collectively, these results demonstrate parallel induction of anti-TG2 and anti-TG3 auto-antibody responses involving separate B-cell populations in DH patients.


Subject(s)
Celiac Disease , Dermatitis Herpetiformis , Humans , Immunoglobulin A , Plasma Cells , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases
4.
Sci Immunol ; 7(71): eabl6543, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559665

ABSTRACT

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.


Subject(s)
Bone Morphogenetic Proteins , Hyperplasia , Interleukin-13 , Intestinal Mucosa , Bone Morphogenetic Proteins/metabolism , Feedback , Humans , Hyperplasia/immunology , Interleukin-13/immunology , SOXC Transcription Factors/metabolism , Strongylida Infections
5.
Eur J Med Chem ; 221: 113516, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33992928

ABSTRACT

The current therapeutic regimen for visceral leishmaniasis is inadequate and unsatisfactory due to toxic side effects, high cost and emergence of drug resistance. Alternative, safe and affordable antileishmanials are, therefore, urgently needed and toward these we synthesized a series of arylpiperazine substituted pyranone derivatives and screened them against both in vitro and in vivo model of visceral leishmaniasis. Among 22 synthesized compounds, 5a and 5g showed better activity against intracellular amastigotes with an IC50 of 11.07 µM and 15.3 µM, respectively. In the in vivo, 5a significantly reduced hepatic and splenic amastigotes burden in Balb/c mice model of visceral leishmaniasis. On a mechanistic node, we observed that 5a induced direct Leishmania killing via mitochondrial dysfunction like cytochrome c release and loss of membrane potential. Taken together, our results suggest that 5a is a promising lead for further development of antileishmanial drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Design , Leishmania donovani/drug effects , Piperazine/pharmacology , Pyridones/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Molecular Structure , Parasitic Sensitivity Tests , Piperazine/chemistry , Pyridones/chemistry , Structure-Activity Relationship
6.
Sci Immunol ; 6(57)2021 03 05.
Article in English | MEDLINE | ID: mdl-33674321

ABSTRACT

Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.


Subject(s)
Acetylcholine/biosynthesis , Helminthiasis/immunology , Helminths/immunology , Immunity, Innate , Immunity, Mucosal , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cytokines/metabolism , Gene Expression , Helminthiasis/parasitology , Host-Parasite Interactions/immunology , Immunohistochemistry , Immunophenotyping , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Organ Specificity/immunology
7.
PLoS Pathog ; 17(3): e1009476, 2021 03.
Article in English | MEDLINE | ID: mdl-33788902

ABSTRACT

Infectious and inflammatory diseases in the intestine remain a serious threat for patients world-wide. Reprogramming of the intestinal epithelium towards a protective effector state is important to manage inflammation and immunity and can be therapeutically targeted. The role of epigenetic regulatory enzymes within these processes is not yet defined. Here, we use a mouse model that has an intestinal-epithelial specific deletion of the histone demethylase Lsd1 (cKO mice), which maintains the epithelium in a fixed reparative state. Challenge of cKO mice with bacteria-induced colitis or a helminth infection model both resulted in increased pathogenesis. Mechanistically, we discovered that LSD1 is important for goblet cell maturation and goblet-cell effector molecules such as RELMß. We propose that this may be in part mediated by directly controlling genes that facilitate cytoskeletal organization, which is important in goblet cell biology. This study therefore identifies intestinal-epithelial epigenetic regulation by LSD1 as a critical element in host protection from infection.


Subject(s)
Enterobacteriaceae Infections/immunology , Goblet Cells/immunology , Histone Demethylases/immunology , Intestinal Mucosa/metabolism , Trichuriasis/immunology , Animals , Citrobacter rodentium , Goblet Cells/metabolism , Histone Demethylases/metabolism , Intestinal Mucosa/immunology , Mice , Mice, Knockout , Trichuris
8.
J Cell Sci ; 134(5)2021 03 04.
Article in English | MEDLINE | ID: mdl-33589499

ABSTRACT

Notch signaling governs crucial aspects of intercellular communication spanning antigen-presenting cells and T-cells. In this study, we investigate how Leishmaniadonovani takes advantage of this pathway to quell host immune responses. We report induction of the Notch ligand Jagged1 in L. donovani-infected bone marrow macrophages (BMMϕs) and subsequent activation of RBPJκ (also known as RBPJ) in T cells, which in turn upregulates the transcription factor GATA3. Activated RBPJκ also associates with the histone acetyltransferase p300 (also known as EP300), which binds with the Bcl2l12 promoter and enhances its expression. Interaction of Bcl2L12 with GATA3 in CD4+ T cells facilitates its binding to the interleukin (IL)-10 and IL-4 promoters, thereby increasing the secretion of these cytokines. Silencing Jagged1 hindered these events in a BMMϕ-T cell co-culture system. Upon further scrutiny, we found that parasite lipophosphoglycan (LPG) induces the host phosphoinositide 3-kinase (PI3K)/Akt pathway, which activates ß-catenin and Egr1, the two transcription factors responsible for driving Jagged1 expression. In vivo morpholino-silencing of Jagged1 suppresses anti-inflammatory cytokine responses and reduces organ parasite burden in L. donovani-infected Balb/c mice, suggesting that L. donovani-induced host Jagged1-Notch signaling skews macrophage-T cell crosstalk into disease-promoting Th2 mode in experimental visceral leishmaniasis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Animals , Anti-Inflammatory Agents , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases
9.
Sci Adv ; 6(37)2020 09.
Article in English | MEDLINE | ID: mdl-32917713

ABSTRACT

Intestinal epithelial homeostasis is maintained by adult intestinal stem cells, which, alongside Paneth cells, appear after birth in the neonatal period. We aimed to identify regulators of neonatal intestinal epithelial development by testing a small library of epigenetic modifier inhibitors in Paneth cell-skewed organoid cultures. We found that lysine-specific demethylase 1A (Kdm1a/Lsd1) is absolutely required for Paneth cell differentiation. Lsd1-deficient crypts, devoid of Paneth cells, are still able to form organoids without a requirement of exogenous or endogenous Wnt. Mechanistically, we find that LSD1 enzymatically represses genes that are normally expressed only in fetal and neonatal epithelium. This gene profile is similar to what is seen in repairing epithelium, and we find that Lsd1-deficient epithelium has superior regenerative capacities after irradiation injury. In summary, we found an important regulator of neonatal intestinal development and identified a druggable target to reprogram intestinal epithelium toward a reparative state.


Subject(s)
Intestinal Mucosa , Paneth Cells , Cell Differentiation/genetics , Histone Demethylases/genetics , Humans , Infant, Newborn , Organoids
11.
J Immunol ; 204(10): 2762-2778, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32277055

ABSTRACT

Reciprocal changes in histone lysine methylation/demethylation of M(LPS + IFN-γ)/M(IL-10) genes is one of the factors that direct macrophage polarization and contribute to host defense/susceptibility toward infection. Although, histone lysine methyltransferases and lysine demethylases orchestrate these events, their role remains elusive in visceral leishmaniasis, a disease associated with macrophage M(IL-10) polarization. In this study, we observed that L. donovani induced the expression of histone lysine methyltransferases Ash1l, Smyd2, and Ezh2 and histone lysine demethylases Kdm5b and Kdm6b in J774 macrophages and BALB/c mice. Chromatin immunoprecipitation analysis revealed that L. donovani facilitated H3K36 dimethylation at TNF-α promoter by Smyd2 and H3K27 trimethylation at inducible NO synthase promoter by Ezh2 to suppress their expression in macrophages. Furthermore, infection-induced Kdm5b and Kdm6b modulated H3K4 and H3K27 trimethylation at IL-12, TNF-α, and arginase-1 promoters, respectively, whereas H3K4 trimethylation by Ash1l at IL-10 promoter induced its expression. Analysis of transductional events revealed that HIF-1α upregulated Kdm5b and Kdm6b expression, whereas Ash1l and Ezh2 expression were induced by transcription factor MeCP2. Additionally, Smyd2 was induced by c-Myc in infected macrophages. Knockdown of Ash1l, Ezh2, Kdm5b, and Kdm6b by specific small interfering RNA and Vivo-Morpholino, as well as inhibition of Smyd2 by its specific inhibitor, AZ505, led to increased protective proinflammatory response and inhibited amastigote multiplication in infected J774 macrophages and BALB/c mice, respectively. Collectively, our findings demonstrate that L. donovani exploits specific histone lysine methyltransferases/demethylases to redirect epigenetic programming of M(LPS + IFN-γ)/M(IL-10) genes for its successful establishment within the host.


Subject(s)
Interferon-gamma/metabolism , Interleukin-10/metabolism , Leishmania donovani/physiology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Animals , Cell Differentiation , Cell Line , Cellular Reprogramming , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Immune Evasion , Lipopolysaccharides/metabolism , Mice , Mice, Inbred BALB C , RNA, Small Interfering/genetics
12.
Front Cell Dev Biol ; 8: 618552, 2020.
Article in English | MEDLINE | ID: mdl-33575256

ABSTRACT

Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.

13.
Vaccine ; 38(2): 355-365, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31648908

ABSTRACT

CD11c+CD8α+ and CD11c+CD11b+ dendritic cells are two major subsets of murine splenic CD11c+ DCs which play a crucial role in T cell priming and shaping Th1/Th2 responses, but their role in the context of experimental visceral leishmaniasis (VL) is poorly understood. Herein, we showed that L. donovani infection in Balb/c mice preferentially decreased the population abundance of CD11c+CD11b+ DCs and increased relative abundance of splenic CD11c+CD8α +DCs. During infection, splenic CD11c+CD11b+ DCs induced Th1 differentiation whereas CD11c+CD8α+ DCs promoted Th2 differentiation. Additionally, treatment of infected mice with miltefosine as experimental control exhibited host defense allowing the restoration of CD11c+CD11b+ population and decrease in CD11c+CD8α+ subset. Furthermore, reciprocal regulation of immune accessory surface molecules, Sema4A and OX40L critically determined Th1/Th2 response induced by these DC subsets during VL. L. donovani infection significantly induced OX40L expression and slightly downregulated SEMA 4A expression in CD11c+CD8α+ DCs whereas miltefosine treatment significantly downregulated OX40L expression along with pronounced upregulation of SEMA 4A expression in CD11c+CD11b+ DCs. SiRNA mediated knockdown of SEMA 4A markedly reduced CD11c+CD11b+ driven IFN-γ, TNF-α and IL-12 synthesis in miltefosine treated mice whereas functional blocking of OX40L decreased CD11c+CD8α+ induced IL-10, IL-4 and TGF-ß synthesis in L. donovani infected group. Vaccination of Balb/c mice with antigen-pulsed + CpG-ODN-activated DC subsets revealed that only antigen-pulsed CD11c+CD11b+ DCs eliminated parasite load in visceral organ and restored protective Th1 cytokine response. Collectively, our results suggest that differential regulation of splenic CD11c+ subsets by L. donovani is essential for disease progression and specific subtypes may be exploited as prophylactic measures against visceral leishmaniasis.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Leishmaniasis, Visceral/immunology , Spleen/immunology , Animals , CD11b Antigen/immunology , CD11c Antigen/immunology , CD8 Antigens/immunology , Cell Differentiation/immunology , Disease Models, Animal , Disease Progression , Female , Immunity , Mice , Mice, Inbred BALB C
14.
J Immunol ; 204(3): 596-610, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31882519

ABSTRACT

Immune evasion strategies adopted by Leishmania donovani involve the exploitation of suppressor of cytokine signaling (SOCS) proteins that are well-known negative regulators of the JAK/STAT pathway. However, the cellular mechanism underpinning the induction of SOCS isoforms and their role in breaching the multilevel regulatory circuit connecting the innate and adaptive arms of immunity are still ambiguous during experimental visceral leishmaniasis. Using bone marrow-derived macrophages (BMMфs) and CD4+ T cells, we observed that L. donovani preferentially upregulates SOCS1 and SOCS3 expression in macrophages and T cells, respectively, whereas the SOCS1 level remains consistently high in BMMфs and SOCS3 expression is pronounced and long lasting in T cells. Consequently, this inhibits STAT1-mediated IL-12 induction in macrophages & STAT4-mediated IFN-γ synthesis in T cells. Mechanistically, PI3K/Akt-mediated SRF activation promotes nuclear translocation and binding of Egr2 to SOCS1 promoter for its early induction in infected BMMфs. Additionally, L. donovani activates IDO/kynurenine/AHR signaling in BMMфs to maintain prolonged SOCS1 expression. Later, PGE2, secreted from infected BMMфs induces cAMP-PKA pathway by binding to the EP2/EP4 receptor of CD4+ T cells, leading to SP1, CREB, and GATA1 activation and SOCS3 expression. Small interfering RNA-mediated silencing of SOCS1 and SOCS3 in macrophage and T cells, respectively, restored IL-12 and IFN-γ cytokine levels and BMMф-T cell interaction. Vivo morpholino-mediated silencing of SOCS1 and SOCS3 resulted in protective cytokine responses, thereby reducing organ parasite burden significantly in L. donovani-infected BALB/c mice. Collectively, our results imply that L. donovani orchestrates different SOCS isoforms to impair macrophage-T cell cross-talk and preserve its own niche.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Leishmania donovani/physiology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Cell Communication , Cells, Cultured , Disease Models, Animal , Humans , Immune Evasion , Immunity, Cellular , Interferon-gamma/metabolism , Interleukin-12/metabolism , Mice , Mice, Inbred BALB C , Protein Isoforms/genetics , RNA, Small Interfering/genetics , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Up-Regulation
15.
Eur J Med Chem ; 182: 111632, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31499363

ABSTRACT

ß-amino acids and their analogues are gathering increased attention not only because of their antibacterial and antifungal activity, but also for their use in designing peptidomimetics with increased oral bioavailability and resistance to metabolic degradation. In this study, a series of α-phenyl substituted chalcones, α-phenyl, ß-amino substituted dihydrochalcones and ß-amino acid derivatives were synthesized and evaluated for their antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all synthesized derivatives, 10c showed promising antileishmanial efficacy against both extracellular promastigote and intracellular amastigote (IC50 8.2 µM and 20.5 µM respectively) of L. donovani with negligible cytotoxic effect towards J774 macrophages and Vero cells. 10c effectively reduced spleen and liver parasite burden (>90%) in both hamster and Balb/c model of VL without any hepatotoxicity. In vitro pharmacokinetic analysis showed that 10c was stable in gastric fluid and plasma of Balb/c mice at 10 µg/ml. Further analysis of the molecular mechanism revealed that 10c entered into the parasite by depolarizing the plasma membrane rather than forming nonspecific pores and induced molecular events like loss in mitochondrial membrane potential with a gradual decline in ATP production. This, in turn, did not induce programmed cell death of the parasite; rather 10c induced bioenergetic collapse of the parasite by decreasing ATP synthesis through specific inhibition of mitochondrial complex III activity. Altogether, our results allude to the therapeutic potential of ß-amino acid derivatives as novel antileishmanials, identifying them as lead compounds for further exploration in the design of potent candidates for the treatment of visceral leishmaniasis.


Subject(s)
Amino Acids/pharmacology , Antiprotozoal Agents/pharmacology , Electron Transport Complex III/antagonists & inhibitors , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Mitochondria/drug effects , Amino Acids/chemistry , Animals , Antiprotozoal Agents/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Cricetinae , Dose-Response Relationship, Drug , Electron Transport Complex III/metabolism , Leishmania donovani/metabolism , Leishmaniasis, Visceral/metabolism , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Vero Cells
16.
J Med Chem ; 62(11): 5655-5671, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31124675

ABSTRACT

In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC50 9.54 and 5.42 µM, respectively) and intracellular amastigote (IC50 9.81 and 3.75 µM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmaniasis, Visceral/drug therapy , Metronidazole/chemical synthesis , Metronidazole/pharmacology , Quinolines/chemistry , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacokinetics , Chemistry Techniques, Synthetic , Chlorocebus aethiops , Disease Models, Animal , Leishmania donovani/drug effects , Leishmania donovani/physiology , Metronidazole/chemistry , Metronidazole/pharmacokinetics , Rats , Structure-Activity Relationship , Tissue Distribution , Vero Cells
17.
J Immunol ; 201(3): 957-970, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29907707

ABSTRACT

IL-1R/TLR signaling plays a significant role in sensing harmful foreign pathogens and mounting effective innate and adaptive immune responses. However, the precise mechanism by which Leishmania donovani, an obligate intramacrophagic pathogen, breaches IL-1R/TLR signaling and host-protective immunity remains obscure. In this study, we report the novel biphasic role of Toll-interacting protein (Tollip), a negative regulator of the IL-1R/TLR pathway, in the disease progression of experimental visceral leishmaniasis. We observed that during early hours of infection, L. donovani induced phosphorylation of IRAK-1, resulting in the release of Tollip from the IL-1R-associated kinase (IRAK)-1 complex in J774 macrophages, which then acted as an endocytic adaptor on cell surface IL-1R1 and promoted its lysosomal degradation. In the later stage, Tollip shuttled back to IRAK-1, thereby inhibiting IRAK-1 phosphorylation in association with IRAK-M to neutralize downstream TLR signaling in infected macrophages. Moreover, during late infection, L. donovani enhanced nuclear translocation and recruitment of transcription factors early growth response protein 2, NF erythroid 2-related factor 2, and Ahr on Tollip promoter for its induction. Small interfering RNA-mediated silencing of Tollip in infected macrophages significantly enhanced NF-κB activation and induced host-defensive IL-12 and TNF-α synthesis, thereby reducing amastigote multiplication. Likewise, abrogation of Tollip in L. donovani-infected BALB/c mice resulted in STAT-1-, IRF-1-, and NF-κB-mediated upregulation of host-protective cytokines and reduced organ parasite burden, thereby implicating its role in disease aggravation. Taken together, we conclude that L. donovani exploited the multitasking function of Tollip for its own establishment through downregulating IL-1R1/TLR signaling in macrophages.


Subject(s)
Intracellular Signaling Peptides and Proteins/immunology , Leishmania donovani/immunology , Receptors, Interleukin-1/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Animals , Cells, Cultured , Down-Regulation/immunology , Female , Interleukin-1 Receptor-Associated Kinases/immunology , Leishmaniasis, Visceral/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , NF-kappa B , Phosphorylation/immunology , STAT1 Transcription Factor/immunology , Tumor Necrosis Factor-alpha/immunology , Up-Regulation/immunology
18.
Parasitol Res ; 117(9): 2901-2912, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29946763

ABSTRACT

We earlier found that F6 fraction of human filaria Brugia malayi cross-reacted with sera of Leishmania donovani infected hamsters and immunization with F6 inhibited both filarial and leishmanial infections. In the present study, we identified a 52.9-93.6 kDa fraction (Ld1) of L. donovani that cross-reacted with sera of B. malayi infected animals and investigated effect of Ld1 on filarial infection. Immunization of BALB/c mice with Ld1 facilitated B. malayi infection with remarkable increase in parasite burden. Facilitation of filarial infection was associated with downregulated cell proliferation, IL-5, IL-13, IFN-γ, TNF-α, and IL-2 levels and upregulated IL-4 and TGF-ß. Ld1 exposure also suppressed MHC class-I, MHC class-II, and FcεR1 expression, and phagocytosis in naive mouse macrophages, and CD4+, CD8+, and CD19+ cell population in mouse spleen. Two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight-mass spectrometry revealed eight proteins in Ld1: putative heat shock protein (HSP) 70-related protein 1, HSP70 mitochondrial precursor, alanine aminotransferase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, protein disulfide isomerase, putative ATPase beta subunit, trypanothione reductase, and a hypothetical protein. HSP70 protein mitochondrial precursor and trypanothione reductase showed homology with Trypanosoma cruzi and L. donovani, respectively, and the rest 6 proteins including hypothetical protein bear homology with L. infantum. In conclusion, the present study for the first time shows that immunization with filarial cross-reactive Ld1 fraction of L. donovani facilitates filarial infection by modulating Th1 and Th2 responses. Ld1 molecules may therefore facilitate filarial infection in filaria-leishmania co-infection.


Subject(s)
Brugia malayi/immunology , Cross Reactions/immunology , Filariasis/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis/immunology , Animals , Cell Proliferation , Coinfection/immunology , Coinfection/parasitology , Cricetinae , Filariasis/parasitology , Humans , Leishmaniasis/parasitology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Th1 Cells/immunology , Th2 Cells/immunology , Vaccination
19.
Cell Mol Life Sci ; 75(3): 563-588, 2018 02.
Article in English | MEDLINE | ID: mdl-28900667

ABSTRACT

In an endeavor to search for affordable and safer therapeutics against debilitating visceral leishmaniasis, we examined antileishmanial potential of ammonium trichloro [1,2-ethanediolato-O,O']-tellurate (AS101); a tellurium based non toxic immunomodulator. AS101 showed significant in vitro efficacy against both Leishmania donovani promastigotes and amastigotes at sub-micromolar concentrations. AS101 could also completely eliminate organ parasite load from L. donovani infected Balb/c mice along with significant efficacy against infected hamsters (˃93% inhibition). Analyzing mechanistic details revealed that the double edged AS101 could directly induce apoptosis in promastigotes along with indirectly activating host by reversing T-cell anergy to protective Th1 mode, increased ROS generation and anti-leishmanial IgG production. AS101 could inhibit IL-10/STAT3 pathway in L. donovani infected macrophages via blocking α4ß7 integrin dependent PI3K/Akt signaling and activate host MAPKs and NF-κB for Th1 response. In silico docking and biochemical assays revealed AS101's affinity to form thiol bond with cysteine residues of trypanothione reductase in Leishmania promastigotes leading to its inactivation and inducing ROS-mediated apoptosis of the parasite via increased Ca2+ level, loss of ATP and mitochondrial membrane potential along with metacaspase activation. Our findings provide the first evidence for the mechanism of action of AS101 with excellent safety profile and suggest its promising therapeutic potential against experimental visceral leishmaniasis.


Subject(s)
Ethylenes/therapeutic use , Integrins/antagonists & inhibitors , Leishmania donovani/enzymology , Leishmaniasis, Visceral/drug therapy , NADH, NADPH Oxidoreductases/drug effects , Animals , Cells, Cultured , Cricetinae , Disease Models, Animal , Ethylenes/pharmacology , Female , Host-Parasite Interactions/drug effects , Integrins/drug effects , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/pathology , Male , Mice , Mice, Inbred BALB C , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/drug effects , Signal Transduction/drug effects
20.
J Med Chem ; 60(3): 1041-1059, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28059524

ABSTRACT

A series of pyrazolo(dihydro)pyridines was synthesized and evaluated for antileishmanial efficacy against experimental visceral leishmaniasis (VL). Among all compounds, 6d and 6j exhibited better activity than miltefosine against intracellular amastigotes. Compound 6j (50 mg/kg/day) was further studied against Leishmania donovani/BALB/c mice via the intraperitoneal route for 5 days and displayed >91 and >93% clearance of splenic and liver parasitic burden, respectively. Combination treatment of 6j with a subcurative dose of miltefosine (5 mg/kg) in BALB/c mice almost completely ameliorated the disease (>97% inhibition) by augmenting nitric oxide generation and shifting the immune response toward Th1. Furthermore, investigating the effect of 6j on Leishmania promastigotes revealed that it induced molecular events, such as a loss in mitochondrial membrane potential, externalization of phosphatidylserine, and DNA fragmentation, that ultimately resulted in the programmed cell death of the parasite. These results along with pharmacokinetic studies suggest that 6j could be a promising lead for treating VL as an adjunct therapy with miltefosine.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Phosphorylcholine/analogs & derivatives , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/therapeutic use , Mice , Mice, Inbred BALB C , Phosphorylcholine/pharmacokinetics , Phosphorylcholine/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...